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Abstract
In this work we study the electronic structure of doped multi-quantum wires
formed by steps in the vicinal surfaces of GaAs. It is verified that multi
one-dimensional electronic systems can exist, which contrasts with a previous
conclusion in the case of a single wire where it was demonstrated that
the presence of residual acceptors inhibited the formation of such a type
of structure. The effects of dopant diffusion, residual density of acceptors
and exchange–correlations contributions have been addressed by the self-
consistent solution of the Schrödinger equation treated in the effective mass
approximation.

1. Introduction

The extraordinary advance in the modern techniques of epitaxial growth allows a huge number
of possibilities concerning the ways of quantum confinement of charge carriers. A particular
situation occurs when the carriers are furnished by defined doped atomic planes (planar doping)
of the host semiconductor material [1–3]. In the metallic doping regime, the latter generate a
self-consistent potential which confines the carriers, giving rise to discrete energy levels in
the direction perpendicular to the doping directions while the electron liquid is free in the
doping plane. Contrarily to modulation doped quantum wells, where in general only one
subband is occupied, such space charge layers can give rise to various subbands which present
distinct transport mobilities along the doping layer due to different spatial superposition with
the dopants.

An interesting proposal has been suggested which combines the epitaxial growth in
vicinal planes (terraces) and the planar doping technique with the aim of obtaining quasi-
one-dimensional doped systems [4, 5]. The results do not lead to conclusive experimental
realizations of such a type of structures; nevertheless, they present clear evidences of a
substantial Si incorporation in Ga sites in the vicinities of the steps that delimit vicinal planes,
for example, in the ones originated from the (100) plane in GaAs crystals, as illustrated in
figure 1.
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A)

B)

Figure 1. Formation of quantum wires in the (100) GaAs face, with incorporation of Si in the place
of Ga and the epitaxial growth after planar doping. (A) Transversal section with Si incorporation in
the vicinities of the steps which delimit the vicinal planes in the (100) plane of Ga. (B) Schematic
representation of the vicinal planes as a function of the angle α and of the crystal lattice
parameter a.

Aiming to mimic the experimental situation just described, recent calculations were
conducted on isolated cylindrical GaAs n-type doped quantum wires based on the semiclassical
Thomas–Fermi approximation, as well as on the density functional theory in the local density
approximation (LDA) [6]. As a result, it has been demonstrated that the presence of
residual acceptors in the host material (GaAs) would prevent the formation of such kind of
wires.

Contrarily to what has been previously demonstrated [6], in this work we show that the
experimental realization of vicinal doped quantum wires may be achieved if instead of isolated
quantum wires one contemplates the formation of multi-quantum wires. It is verified that the
formation of quasi-one-dimensional electron liquids relies on an appropriate distance between
the contiguous wires. Explicitly, such a distance should be less than the typical depletion
layer of usual planar doping structures, which is of the order of 1000 Å. In other words,
this corresponds to a estimate of how large the width of the steps of the ladder should be.
Moreover, it is verified also that there is a threshold doping density for the formation of the
doped wires.

In order to perform the calculations we resort to the self-consistent solution of the
Schrödinger equation. In it, subjects like the effects of dopant diffusion and the role of the
residual density of acceptors are addressed. Our investigations are conducted considering the
dopants to be distributed in the form of a cylinder, as shown in figure 2. In the next section we
present the theoretical model and the basic equations which solve the electronic structure.
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Figure 2. Schematic representation of the multi-quantum wires considered in this work.

2. Theoretical model

The theoretical model proposed in this work is based on the following assumptions: (a) the
donor distribution is considered to be radial; (b) the wires are considered infinite, which means
that edge effects are not taken in account; (c) we assume parabolic bands and the effective
mass approximation. Based on such assumptions the electronic density n(r) and the effective
potential Vef(r) will depend only on the radial coordinate. In the following, we present the
theoretical grounds of our calculations. They are similar to the case of isolated quantum
wires [6] except for a crucial consideration that will differentiate the two cases as will be
explained bellow.

The equations are self-consistently solved. As a first step, one has to know the total
potential,

V (r) = VH(r)+ Vxc, (1)

where Vxc takes into account the exchange and correlation effects in the frame of the local
density approximation (LDA). The parameterization used to estimate many-body effects is the
one suggested by Hedin and Lundqvist for the case of a homogeneous electron gas [7]. The
Hartree potential, VH, is obtained via the solution of the Poisson equation:

∇2VH = 8π[nD(r)− n(r)− nA(r)] (2)

where the electronic density n(r) = ∑
i Ni |ψi (r)|2 is obtained through the solution of the

Schrödinger equation with Ni and ψi being the linear electron density and the wavefunction of
the i th subband. The wavefunction may be written as

ψ j,m(r, θ, z) = R j,m(r)
eimθ

√
2π

e−ikz z

√
L

(3)

where kz denotes the wavevector along the z-axis and j and m are the principal and magnetic
quantum numbers, respectively. As regards R j,m(r), it should satisfy the radial equation given
by

(
d2

dr 2
+ 1

r

d

dr

)

R j,m(r)−
[

V (r)+ m2

r 2

]

R j,m(r) = E j,m R j,m(r). (4)

Now we will stress the difference between considering an isolated quantum wire and
multi-quantum wires. This comes basically from the boundary conditions imposed on the
problem. In the isolated case, [6] had propagated the potential until the derivative of it was
zero. This condition was reached by pinning its value at the acceptor level of the bulk material.
Nevertheless, in the case of multi-wires, the space between the wires is sufficiently small (200–
300 Å) which, from the bulk point of view, means that the system can be analysed as a planar
doped sheetin the scale of the depletion layer, as shown in figure 3. The value of the depletion
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Figure 3. Idealized representation of isolated doped multi-quantum wires (DQW) that in the scale
of the depletion layer, la , may be considered a planar sheet for d � la .

Figure 4. Effective potential of cylindrical quantum wires considering the incorporation of
acceptors uniformly distributed in the bulk of the GaAs. μ = 0 corresponds to the Fermi energy.

layer may be deduced from the knowledge of the electric force (by means of the Gauss law)
and the work to take an electron from ra to rb in region II of figure 4. The estimated value is
given by

la �
√

Eg

πna
, (5)

where Eg is the gap of the host material (GaAs) and na is the three-dimensional acceptor
density. Considering that each acceptor will take one electron from the electron gas, we have
that nala will furnish the number of depleted electrons per unit of area. Therefore, the number of
depleted electrons per wire, per unit length, Ndep, may be written as a function of the distance
d of the wires as

Ndep �
√

Egna

π
d. (6)

From the previous equation one can see that there is a linear dependence with the distance
between the wires. This shows that when d increases, the case of an isolated wire is recovered,
which means that the potential energy of the donors cannot supplant the potential energy of the
acceptors with the result that the isolated wire will be complete depleted. From the Gauss law,
the boundary condition to the equation (2) obtained in r = ra, the region I in the figure 4, is
given by

V (ra) = 0 and
dV

dr
(ra) = 4

ra
Ndep. (7)
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Table 1. Percentage of depleted electrons for wires of rDQW = 50 Å, linear densities, λ =
0.78 × 106, 3.9 × 106 and 7.8 × 106 cm−1, distance between the wires, d = 200 Å and a
homogeneous acceptor density, na = 1015 cm−3.

Donors cm−1 0.78 × 106 3.9 × 106 7.8 × 106

Ndep (%) 72 14 7

3. Results and discussion

Considering the multi-quantum-wire system previously sketched, figure 5 shows the electronic
structure of three types of wire calculated in the Hartree (H) and LDA approximations. In the
scale of the depletion layer, much bigger than the wires’ separation, the superlattice of wires
is equivalent to a single planar doped structure, which can lead to the formation of an one-
dimensional electron liquid even with the incorporation of an uniform density of acceptors.
This may be understood as a consequence of the electrostatic competition between the ‘two-
dimensional’ structure formed by the superlattice and the three-dimensional structure formed
by the volumetric distribution of the acceptors. Based on such a model, figures 5(a)–(c) present
the results for doped quantum wires (DQW) with radius rDQW = 50 Å and linear densities
λ = 0.78 × 106, 3.9 × 106 and 7.8 × 106 cm−1, respectively. Moreover, they are immersed
in a homogeneous acceptor density with na = 1015 cm−3 and inter-wire separations of 200 Å.
With such parameters, tunnelling between the wires can be neglected due to the fact that the
electronic density decreases quickly as a function of the radial coordinate, r , above 200 Å (see
the insets of figure 5). The figures also show the probability densities, the calculated energy
per subband, Emk (horizontal dotted lines), and the number of electrons per subband, nmk . For
the latter quantity, one can observe in figure 5(b) and (c) that there is a considerable number
of electrons in higher subbands where there may even occur an inversion of population, as the
second subband of figure 5(c) shows. Allied to this, such carriers are not in the same region of
the dopants, which will increase their mobilities. It is interesting to note that the number of the
electrons depleted from the system increases rapidly with the decrease of doping. Such a fact
is represented in table 1. This represents one of the theoretical limits to obtaining doped multi-
quantum wires: below 1018 donors cm−3 the background of acceptors will considerably affect
the electron occupation. As a final comment, we have found that the estimated value of the
depletion layer is around 5 × 104 Å, and that for d bigger than 400 Å the wires are completely
depleted, which recovers the isolated wire case [6].

4. Conclusions

In summary, we have shown that it is possible to obtain quasi-one-dimensional electron
liquids through the growth of multi-quantum wires on the corners of terraces of GaAs ladder
structures via silicon planar doping. Nevertheless, such realization is only possible if there is a
compromise between the size of the steps, the density of acceptors throughout the structure, and
the density of donors. For example, for steps larger than 1000 Å, the wires will be completely
depleted. The importance of such structures is that they may be used for the realization
of a quantum-wire intersubband laser through the jumping of the electrons from one energy
subband to another via the action of an electric field. The basic principle of such a device is
based on a conventional quantum-well cascade laser. However, the optically active region does
not consist of coupled quantum-wells anymore, but now consists of coupled quantum-wires.
The advantage of quantum-wire intersubband structures is a theoretically predicted decrease
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Figure 5. Electronic structure data for the unitary cell of cylindrical quantum wires 200 Å
apart. The figure shows the effective potentials in the Hartree (H) and LDA approximations.
The electronic densities per unit length (insets), the energy levels (horizontal dots), the probability
densities per subband and the electronic occupation per subband, nmk , are presented for wires with
rDQW = 50 Å, na = 1015 acceptors cm−3 and linear densities (a) λ = 0.78 × 106 donors cm−1,
(b) 3.9 × 106 donors cm−1 and (c) 7.8 × 106 donors cm−1 respectively.
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of non-radiative losses compared to quantum-well structures [8] and a possible reduction of
the threshold current [9]. Also interesting to note from the results is that the higher energy
subbands possess higher population density compared to the usual delta doped superlattices
[10] and that such subbands are not in the same region of the dopants which would furnish
samples of higher mobilities.
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[5] Däweritz L, Hagenstein K and Schutzendube P 1993 J. Vac. Sci. Technol. A 11 1802
[6] Marletta A, Qu F Y and Dantas N O 2003 Microelectron. J. 34 663
[7] Hedin L and Lundqvist B I 1971 J. Phys. C: Solid State Phys. 4 2064
[8] Keck I, Schmult S, Wegscheider W, Rother M and Mayer A P 2003 Phys. Rev. B 67 125312
[9] Pfeiffer L N, West K, Störmer H L, Eisenstein J P, Baldwin K W, Gershoni D and Spector J 1990 Appl. Phys.

Lett. 56 1697
[10] Anjos V, Ioriatti L and Nunes L A O 1994 Phys. Rev. B 49 7805

http://dx.doi.org/10.1103/PhysRevB.58.7205
http://dx.doi.org/10.1103/PhysRevB.63.035404
http://dx.doi.org/10.1016/S1386-9477(02)00379-X
http://dx.doi.org/10.1088/0953-8984/7/4/004
http://dx.doi.org/10.1116/1.578429
http://dx.doi.org/10.1016/S0026-2692(03)00090-9
http://dx.doi.org/10.1088/0022-3719/4/14/022
http://dx.doi.org/10.1103/PhysRevB.67.125312
http://dx.doi.org/10.1063/1.103121
http://dx.doi.org/10.1103/PhysRevB.49.7805

	1. Introduction
	2. Theoretical model
	3. Results and discussion
	4. Conclusions
	Acknowledgments
	References

